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Abstract
Bases of invariant and covariant functions for the systems with all possible line
group symmetries are found. This is used to generalize the Bloch theorem
to the full line group symmetry and to derive the most general forms of the
emitting fields. Applications in the physics of nanotubes, polymers and other
quasi-1D structures are discussed.

PACS numbers: 61.46.Fg, 61.50.Ah, 73.22.Dj

1. Introduction

Discovery of carbon nanotubes [1] and, later on, transition metal dichacogenide [2] and
other kinds of nanotubes [3] as well as zinc oxide nanowires and nanosprings [4], all of
which may have high-order principle axis, helical, but not always translational periodicity [5],
combined with several types of parities, stressed out necessity of application of line groups in
nanophysics [6].

Line groups [7] describe symmetries of the systems with periodicity along a single
direction (the z-axis by convention). The periodicity can be simultaneously helical and
translational (including trivially helical, i.e. just translational) or only helical. The latter
possibility is a consequence of the lack of the crystallographic restrictions on the order of
the principle axis where a screw-axis may involve rotations for an angle incommensurate to
2π . Therefore, in contrast to the finite number of the diperiodic and space groups, there are
infinitely many line groups. Some of the subgroups of the diperiodic and space groups describe
symmetry of the quasi-1D systems, i.e. they are line groups. There are 80 such subgroups and
they are also called rod groups [8].

Quantum-mechanical approach is indispensable in interpretation and prediction of the
most remarkable properties of the nano-systems. Usage of the symmetry adapted basis (SAB)
of the single particle quantum state space L(R3) is necessary in any quantum-mechanical
study. This paper addresses the problem of finding SAB for all possible quasi-1D systems.

0305-4470/06/3811833+14$30.00 © 2006 IOP Publishing Ltd Printed in the UK 11833

http://dx.doi.org/10.1088/0305-4470/39/38/009
mailto:ivag@afrodita.rcub.bg.ac.yu
http://stacks.iop.org/JPhysA/39/11833


11834 I Milošević et al

Namely, for the most general line group symmetry, the functions which make the symmetry
adapted basis are found.

Transformation � of the line group L acts on a function f (r) according to the law:

�F (r)
def= F(�−1r), (1)

and invariant functions, which satisfy

H(�−1r) = H(r), ∀� ∈ L, (2)

form a subspace of L(R3). A basis of this subspace will be explicitly found. Covariant
functions, i.e. the functions transforming according to the nonsymmetric irreducible
representations, will be also discussed, and their general form (which enables construction of
the SAB for arbitrary quasi-1D crystal) will be derived.

This group theoretical result has many applications in solving physical problems. Firstly,
it enables generalization of the Bloch theorem: from the translational to the full line group
symmetry of the quasi-1D system. Moreover, such a generalization refers also to the
non-Abelian groups, as well as to the incommensurate quasi-1D crystals (with helical but
not translational periodicity). Further, this way imposed restrictions onto the form of the
e.g., electronic eigenfunctions, besides giving deep insight into the physical properties of
the considered physical systems through the direct implementation of the selection rules,
may significantly improve quality and efficiency of the numerical (e.g. density functional)
calculations (as the basis set of functions used is optimal). Finally, potential produced by the
system (nanotube, for instance) is to be invariant under its symmetry group which means that
this potential can be expanded over the basis of invariants, revealing profound interrelation of
the symmetry and the dynamics of the system.

After a brief remainder on the line group structure (section 2), the invariant functions are
derived (section 3). These results are used to generalize the Bloch form of the wavefunctions
to the helical systems (section 4). Finally, the obtained results are applied to nanotubes: their
electronic eigenfunction forms and potentials formed by them are discussed (section 5).

2. Line groups structure and helical coordinates

All line groups are products [7] ZP of an infinite cyclic subgroup Z, called the group
of generalized translations with an axial point group P . Possible types of generalized
translational groups are helical (or the screw-axis) T Q′(f ) and glide-plane group T ′(a/2),
generated by the elements (Koster–Seitz notation) (CQ′ |f ) and (σv|a/2), respectively. Here,
σv is a mirror plane containing the z-axis, while CQ′ is the rotation around the z-axis for
2π/Q′. It should be stressed out that Q′ may be any real number, but for uniqueness we
assume Q′ � 1. Pure translational group T (a) (generated by (I |a)) is a special case of the
screw-axis with trivial rotational part, Q′ = 1. Only for Q′ rational, Q′ = q ′/r ′ (q ′ and r ′

integers), the screw-axis (denoted then as T r ′
q ′(f )) has a subgroup of pure translations T (q ′f ),

as (CQ′ |f )q
′ = (

C
r ′q ′
q ′

∣∣q ′f
) = (I |q ′f ).

Axial point groups are classified into the seven families, each of them parameterized by the
order n of the principle rotational axis: Cn,S2n,Cnh,Dn, Cnv,Dnd and Dnh. The products
are always weak-direct, as Z ∩ P = (I |0) (identity element of the group), and in some
cases when one or both factors are invariant, it is a semidirect or a direct product. However,
any combination is not a group, but only those which satisfy the compatibility condition
ZP = PZ [9]. This effectively restricts the screw-axis compatible with the vertical and
horizontal mirror parities to the achiral cases: pure translational T (f ) and zig-zag T 1

2(f )

(we call chiral the compound giving non-equivalent structure under spatial inversion, i.e. the
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Table 1. Harmonics of the line groups. For each family (column 1) its factorization (used in the
calculations) and the first family subgroup L(1) with the remaining generators are given (column 2);
the U-axis coincides with the x-axis, σv is the xy-plane, and U ′ bisects vertical mirror planes. Bases
of harmonics are given in the last column. They are expressed through the chiral, translational or
zig-zag (C, T , Z) harmonics, and in the explicit form below. For the first family K and M take
all integer values, for families 2–4 and 5–8 K and M are respectively non-negative (for family 5
instead of M alternatively K may be taken non-negative), while for families 9–13 both M and K are
non-negative.

Family
L(1), generators HM

K

1 T r
q (f )Cn SM

K = FnM
(−Mr+Kq̃)/a

T r
q (f )Cn einMϕei2π(Kq̃−Mr)z/a

2 T (a)S2n
1
2 T M

K + 1
2 (−)MT M

−K

T (a)Cn, C2nσh M even: einMϕ cos 2πKz/a

M odd: einMϕ sin 2πKz/a

3 T (a)Cnh
1
2 T M

K + 1
2 T M

−K

T (a)Cn, σh einMϕ cos 2πKz/a

4 T 1
2n(a/2)Cnh

1
2 ZM

K + 1
2 ZM

M−K

T 1
2n(a/2)Cn, σh einMϕ cos 2π(2K − M)z/a

5 T r
q (f )Dn

1
2 SM

K + 1
2 S−M

−K

T r
q (f )Cn, U cos(nMϕ + 2π(Kq̃ − Mr)z/a)

6 T (a)Cnv
1
2 T M

K + 1
2 T −M

K

T (a)Cn, σv cos nMϕ ei2πKz/a

7 Tc(a/2)Cn
1
2 T M

K + 1
2 (−)KT −M

K

T (a)Cn, (σv| 1
2 ) K even: cos nMϕ ei2πKz/a

K odd: sin nMϕ ei2πKz/a

8 T 1
2n(a/2)Cnv

1
2 ZM

K + 1
2 Z−M

K−M

T 1
2n(a/2)Cn, σv cos nMϕ ei2π(2K−M)z/a

9 T (a)Dnd
1
4 T M

K + 1
4 (−)MT M

−K + 1
4 T −M

K + 1
4 (−)MT −M

−K

T (a)Cn, U
′, σv M even: cos nMϕ cos 2πKz/a

M odd: cos nMϕ sin 2πKz/a

10 Tc(a/2)S2n
1
4 T M

K + 1
4 (−)KT −M

K + 1
4 (−)MT −M

−K + 1
4 (−)M+KT M

−K

T (a)Cn, (σv| 1
2 ), U ′ K, M even: cos nMϕ cos 2πKz/a

K even, M odd: cos nMϕ sin 2πKz/a

K odd,M even: sin nMϕ sin 2πKz/a

K, M odd: sin nMϕ cos 2πKz/a

11 T (a)Dnh
1
4 T M

K + 1
4 T M

−K + 1
4 T −M

K + 1
4 T −M

−K

T (a)Cn, U, σv cos nMϕ cos 2πKz/a

12 Tc(a/2)Cnh
1
4 T M

K + 1
4 (−)KT −M

K + 1
4 T −M

−K + 1
4 (−)KT M

−K

T (a)Cn, (σv| 1
2 ), σh K even: cos 2πKz/a cos nMϕ

K odd: sin 2πKz/a sin nMϕ

13 T 1
2n(a/2)Dnh

1
4 ZM

K + 1
4 Z−M

K−M + 1
4 ZM

M−K + 1
4 Z−M

−K

T 1
2n(a/2)Cn, U, σv cos nMϕ cos 2π(2K − M)z/a

structure whose left and right conformations have isomorphic but different symmetry groups).
Finally, taking into account that some of the products ZP result in the same group, we get
altogether 13 infinite families of the line groups (table 1). It should be noted that Cn and Dn
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are compatible with any screw axis, even without translational periodicity. Hence, any chiral
quasi-1D crystal has symmetry described by a line group of either first or fifth family, and
here pertain all the incommensurate (without translational periodicity) structures.

Next important structural characteristic of a line group is that all roto-helical
transformations form an invariant subgroup L(1), which is the maximal subgroup belonging
to the first family line groups T Q(f )Cn: for 2–8 families it is a halving subgroup, while for
9–13 families it is an index four subgroup.

The existence of the Cn subgroup in the point factor reflects uniqueness of the screw-axis
(for n > 1). Indeed, the same L(1) is obtained as T Q′

s
(f )Cn for Q′

s = Q′n/(Q′s + n) (giving
the helical generator (CQ′Cs

n|f )) for s integer. To this end we use convention that Q is the
greatest finite among Q′

s , being

Q =



Q′ if n � Q′

nQ′

n + Q′ + Q′[− n
Q′

] if n � Q′, (3)

([x] and {x} are integral and fractional parts of x). For commensurate cases, q ′ = q ′/r ′ we
get (LCM denotes the least common multiple)

Q = q

r
, with q = LCM(q ′, n) = nq̃, r = q

n

{
r ′n
q ′

}
. (4)

For translational group we get T (a)Cn = T 1
n(a)Cn (i.e. finite greatest Q = q = n is for

r = 1; q̃ = 1), while in zig-zag cases T 1
2(a/2)Cn = T 1

2n(a/2)Cn (i.e. Q = 2n, r = 1,

q̃ = 2). Generally, with this convention the translational period of the commensurate line
group is a = f q̃, while the order of the principle axis of the isogonal group is q. To unify
notation, for the incommensurate helical factors of the line groups of families 1 and 5, we also
write T r

q(f ), assuming q = Q irrational and r = 1.
Very practical in some of the forthcoming considerations are screw-axis dependent helical

coordinates, (ρ, ϕ̃, z̃), related to the cylindrical ones (ρ, ϕ, z) by

ρ = ρ, z = h√
4π2ρ2 + h2

z̃, ϕ = ϕ̃ +
2π√

4π2ρ2 + h2
z̃. (5)

For fixed ρ and ϕ̃, coordinate curve (ρ, ϕ̃, z̃) is a helix with step h = Qf (for commensurate
groups this gives h = na/r , and particularly in the achiral cases h = na) on the cylinder of
radius ρ coaxial to the z-axis. Such helices are invariant under the helical groups: any point
of a helix is mapped into the same helix by any of the helical transformation.

The action (1) of the line group transformation � on the function over Euclidean space R
3

leaves the radial (cylindrical) coordinate ρ invariant, i.e. it is reduced to the space L(S1 × R)

of the functions F(ϕ, z) over cylinder. Further, the action of any line group transformation
can be derived by combining the action of the following generators (in the cylindrical and
helical coordinates, respectively):

(
Cr

q

∣∣f )
(ϕ, z) =

(
ϕ +

2πr

q
, z + f

)
,

(
Cr

q

∣∣f )
(ϕ̃, z̃) =

(
ϕ̃, z̃ +

r

q

√
4π2ρ2 + h2

)
,

Cn(ϕ, z) =
(

ϕ +
2π

n
, z

)
, Cn(ρ, ϕ̃, z̃) =

(
ϕ̃ +

2π

n
, z̃

)
,

(I |f )(ϕ, z) = (ϕ, z + f ), (I |f )(ϕ̃, z̃) =
(

ϕ̃ − 2π

h
f, z̃ +

√
4π2ρ2 + h2

h
f

)
,
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U(ϕ, z) = (−ϕ,−z), U(ϕ̃, z̃) = (−ϕ̃,−z̃),

Cnσh(ϕ, z) =
(

ϕ +
2π

n
,−z

)
, Cnσh(ϕ̃, z̃) =

(
ϕ̃ + 2

2π√
4π2ρ2 + h2

z̃,−z̃

)
,

Cnσv(ϕ, z) =
(

−ϕ +
2π

n
, z

)
, Cnσv(ϕ̃, z̃) =

(
−ϕ̃ − 2

2π√
4π2ρ2 + h2

z̃ +
2π

n
, z̃

)
.

(6)

Note that, for n = 0 the last two equations give laws of transformation under the mirror planes.
Also note that in the helical coordinates Cn and

(
Cr

q

∣∣f )
change just a single coordinate: ϕ̃ and

z̃, respectively.

3. Invariant functions

We look for the subspace of the invariant functions H(ϕ, z) (or H̃ (ϕ̃, z̃)) in the spaceL(S1×R).
The condition of invariance (2) becomes

�H(ϕ, z) = H(ϕ, z), �H̃ (ϕ̃, z̃) = H̃ (ϕ̃, z̃). (7)

Each line group element imposes one condition, but the independent set of equations (2) is
given by the action of the generators only. Using the generators (given in table 1) and the
corresponding action from (6), two or more equations (for each line group) are found and
simultaneously solved.

The subspace of invariant functions will be given by its basis, the elements of which are
called harmonics (of the line groups). At first, we will find harmonics of the first family, and
then, by analysing the action of the remaining generators to the first family harmonics, the
bases for all the other families will be derived.

3.1. Harmonics of the first family

As the first family line groups are Abelian, their generators have common eigenbasis in this
space:

FM
ω (ϕ, z)

def= eiMϕ ei2πωz, M = 0,±1, . . . , ω ∈ R, (8)

which is orthogonal:
∫ 2π

0

∫ ∞
−∞ FM∗

ω (ϕ, z)FM ′
ω′ (ϕ, z) dϕ dz = 2πδMM ′δ(ω − ω′) (where δMM ′

and δ(ω − ω′) are Kronecker delta and Dirac’s delta function, respectively). The eigenvalues
of the generators Cn and

(
Cr

q

∣∣f )
corresponding to these functions, exp(−i2πM/n) and

exp(−i2π(Mr/q + ωf )) define the subspaces of irreducible representations.
The first two equation of (6) and condition (2) in the case of functions (8), select harmonics

HM
ω as the eigenfuctions for the eigenvalue one, i.e.:

CnH
M
ω (ϕ, z) = HM

ω (ϕ, z), M = nM̃, M̃ = 0,±1, . . . , (9)(
Cr

q

∣∣f )
HM

ω (ϕ, z) = HM
ω (ϕ, z), Mr + ωf q = 0,±q,±2q, . . . , (10)

Combining these two conditions, one gets M̃nr + ωf = 0,±q,±2q, . . .. The integers on
the left are provided only by the special values ω = (−M̃nr/q + K)/f (K = 0,±1, . . .).
Therefore, the first family line group harmonics are

SM
K (ϕ, z)

def= FnM
(−Mnr/q+K)/f (ϕ, z), M,K = 0,±1, . . . (11)

with orthogonality relations∫ 2π
n

0

∫ f

0
SM∗

K (ϕ, z)SM ′
K ′ (ϕ, z) dϕ dz = 2πf

n
δMM ′δKK ′ . (12)
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Repeating the same procedure for the basis FM
ω (ϕ̃, z̃), or directly substituting cylindrical

coordinates in (11), we find these functions in the helical coordinates:

SM
K (ϕ̃, z̃) = FnM

Kq/r
√

4π2ρ2+h2
(ϕ̃, z̃) = einMϕ̃ e

i 2πKq

r
√

4π2ρ2+h2
z̃
, M,K = 0,±1, . . . , (13)

where M and K count rotational and helical harmonics over ϕ̃ and z̃, respectively.
For the commensurate groups, when q is an integer and a = q̃f the harmonics become

SM
K (ϕ, z) = FnM

(−Mr+Kq̃)/a(ϕ, z), M,K = 0,±1, . . . . (14a)

In the special cases, when the screw-axis degenerates to pure translations T 0
1(a) (coordinate

helices z̃ are vertical lines, and condition (10) is M-independent) and T 1
2n(a) one gets,

respectively

T M
K (ϕ, z) = FnM

K/a(ϕ, z), M,K = 0,±1, . . . , (14b)

ZM
K (ϕ, z) = FnM

(−M+2K)/a(ϕ, z), M,K = 0,±1, . . . . (14c)

3.2. The other families

Families 2–13 have elements that do not commute with the roto-helical transformations.
Therefore, the invariants of these groups form a nontrivial subspace of the first family
harmonics space. Moreover, eigenbasis of L(1) cannot be the basis of this subspace and
the harmonics of 2–13 families are linear combinations of harmonics (11). It is sufficient to
find action of the coset representatives (given in table 1) onto the roto-helical harmonics. It
turns out that this action always has the following form gSM

K = αSM ′
K ′

C2nσhS
M
K (ϕ, z) = e−iπMSM

−K+2 nMr
q

(ϕ, z),

(σv|a/2)SM
K (ϕ, z) = ei2π nMr

q S−M

K−2 nMr
q

(ϕ, z),

UFM
K (ϕ, z) = S−M

−K (ϕ, z),

σhS
M
K (ϕ, z) = SM

−K+2 nMr
q

(ϕ, z),

σvS
M
K (ϕ, z) = S−M

K−2 nMr
q

(ϕ, z).

(15)

While the U-axis can be combined with any helical axis, the rest of the generators are
compatible only with the achiral roto-helical subgroups (thus, only harmonics (14b) and (14c)
are to be considered). Further, as the square of an additional generator g is always from the
roto-helical subgroup L(1), the harmonic invariant under g (and therefore under the group
L(1) + gL(1)) is of the form SM

K + gSM
K . This way we directly find the harmonics of families

2–8, while the procedure is to be repeated, acting on these newharmonics by the remaining
coset representatives for families 9–13. All the line group harmonics are listed in table 1.

To get the normalization
∫ 2π

n

0

∫ f

0 HM∗
K (ϕ, z)HM ′

K ′ (ϕ, z) dϕ dz = δMM ′δKK ′ , the tabulated

harmonics should be divided by the factors
√

2πf

n
,

√
πf

n
and

√
πf

2n
for families 1, 2–8 and

9–13, respectively. The exceptions are normalization factors:

(i)
√

2πf

n
of: HM

0 for families 2 and 3, HM
M/2 for family 4, H 0

0 for families 5 and 9–13, and

H 0
K for families 6–8;

(ii)
√

πf

n
of: H

M �=0
0 and H 0

K �=0 for families 9–12, and H
M �=0
M/2 for family 13.
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The harmonics with M = 0 are ϕ-independent (and also ϕ̃-independent) functions, i.e.
they are constants on the circles around the z-axis. However, harmonics with K = 0 are
constant along the coordinate helices z̃, and only when L(1) = T (a) (families 2, 3, 6, 7, 9–12)
they are constant along the z-axis. For M �= 0, harmonic HM

K is invariant under CnM , as its
rotational period is 2π/n|M|: HM

K (ϕ + 2π/n|M|, z) = HM
K (ϕ, z); only for M = 1 rotational

period 2π/n of the harmonics coincides with the rotational symmetry of the system. Thus,
rotational symmetry of harmonic is larger than that of the system, except for M = ±1 when
they coincide. The analogue is true for K and the periodicity in z̃ (or z). In other words,
line group L is a subgroup of the symmetry group of its harmonics HM

K , comprising the full
symmetry only of the harmonics with |M| = |K| = 1.

3.3. Invariants in the whole space

After the basis of harmonics in the space of the functions over cylinder is found, we can easily
complete it to the basis of invariants in L(R3):

UM
KI (r) = RIMK(ρ)HM

K (ϕ, z). (16)

Here, for any fixed M and K the functions RIMK(ρ) form a basis in the space of functions over
ρ. The singularity at ρ = 0 of the cylindrical and helical coordinates (any function F(ρ, ϕ, z)

at ρ = 0 must be ϕ-independent) implies that for M �= 0 the functions RIMK(ρ) vanish at
ρ = 0, as combined with ϕ-dependent harmonics.

For various applications it is advantageous to use the basis

UM
Kb(r) =

√
bJ|nM|(bρ)HM

K (ϕ, z), b ∈ R (17)

(with Bessel functions J|nM|(bρ) normalized as
∫ ∞

0 J|nM|(bρ)J|nM|(b′ρ)ρ dρ = 1
b
δ(b − b′)),

as this is the eigenbasis of kinetic energy:

	UM
Kb(r) = −

(
b2 +

(
2π

Kq̃ − Mr

a

)2
)

UM
Kb(r). (18)

4. Covariants and Bloch functions

Bloch theorem states that the (quasi)particle eigenfunctions of the system translationally
periodic along the z-axis are of the form 
k(r) = eikzu(r), where u(r) is invariant (i.e.
periodic) function: u(ρ, ϕ, z + ta) = u(ρ, ϕ, z). Obviously, the first factor defines the rule
of the transformation under translations, 
k(ρ, ϕ, z + ta) = eikat
k(ρ, ϕ, z), singling out the
irreducible representation D(k)(ta) = eikat of the translational group, while only the second
factor specifies the function obeying this transformation rule.

To generalize this concept to full line group symmetry, we note that the translation group
is Abelian, having only one-dimensional irreducible representations and that this property
is shared first family line groups exclusively, while all the other families have two- and/or
four-dimensional irreducible representations as well. Therefore, the functions are grouped
into the multiplets of covariants 
(λ)l(r) (l = 1, . . . , |λ|) corresponding to the irreducible
representations D(λ) of the dimension |λ| (|λ| = 1, 2, 4), which for each � ∈ L satisfy

�
(λ)l(r)
def= 
(λ)l(�−1r) =

|λ|∑
l′=1

D
(λ)
l′l (�)
(λ)l′(r). (19)

Consequently, taking all irreducible representations λ, it is possible to find symmetry adapted
basis 


(λ)l
C (r) in the space of functions over r. The basis functions transformation rule is given
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by (19) where C = 1, 2, . . . counts linearly independent covariant functions (or multiplets)
which transforms by the same rule.

To describe such a basis, we again firstly consider SAB in the space of the functions over
cylinder, denoting the functions satisfying the same transformations rules (19) as �(λ)l(ϕ, z).
Obviously, simultaneously multiplying the whole multiplet �(λ)l(ϕ, z) by the same invariant
function H(ϕ, z), we obtain functions �(λ)l(ϕ, z)H(ϕ, z) satisfying the same transformation
rules (19). Therefore, having one representative multiple �

(λ)l
00 (ϕ, z) for each irreducible

representation, SAB is obtained by multiplying it by the whole basis of the harmonics (thus,
C is a pair of the indices K and M of the invariants):

�
(λ)l
KM(ϕ, z) = �

(λ)l
00 (ϕ, z)HM

K (ϕ, z). (20)

(The invariant functions transform according to the identical representation, D(λ)(�) = 1, i.e.
�

(λ)l
00 (ϕ, z) = 1 and the corresponding harmonics make a part of the SAB.)

It is now straightforward to see the generalization of the Bloch theorem to the line group
symmetry. Namely,


(λ)l(r) = �
(λ)l
00 (ϕ, z)u(r), (21)

and by combining it with (16), we get SAB in the whole space L(R3):



(λ)l
IKM(r) = �

(λ)l
00 (ϕ, z)RIMK(ρ)HM

K (ϕ, z). (22)

The result obtained enables expansion of any function 
(λ)l(r) over SAB:


(λ)l(r) =
∑
IKM

αIKM�
(λ)l
00 (ϕ, z)RIMK(ρ)HM

K (ϕ, z); (23)

where the sum runs over all allowed values of I,M and K, while the amplitudes are scalar
products: αIKM = (



(λ)l
IKM,
(λ)l

) = ∫



(λ)l∗
IKM(ρ, ϕ, z)
(λ)l(ρ, ϕ, z)ρ dρ dϕ dz. We also

introduce expansions over harmonics with the radial functions being independent of the choice
of RIMK(ρ):


(λ)l(r) =
∑
KM

αM
K (ρ)�

(λ)l
00 (ϕ, z)HM

K (ϕ, z),

αM
K (ρ) =

∑
I

αIKMRIMK(ρ) = ρ

∫ 2π

0

∫ ∞

−∞
�

(λ)l∗
KM (ϕ, z)
(λ)l(ρ, ϕ, z) dϕ dz.

(24)

Knowing harmonics (table 1), it remains to find the representative functions �
(λ)l
00 (ϕ, z)

for each irreducible representation of the line groups. However, as the number of different
irreducible representations of the 13 families of line groups is very large this exhaustive task
is beyond the scope of this paper. But we will sketch the general solution for the first family,
and give the result in a comprehensive form for families 5 and 13, which are important for the
applications to carbon nanotubes (section 5).

For the first family, the irreducible representations are classified [7, 10] by the pairs (k̃, m̃)

of helical and angular quasi-momenta:

k̃Am̃

((
Cr

q

∣∣f )t
Cs

n

) = eik̃f t eim̃ 2π
n

s , k̃ ∈
(

−π

f
,
π

f

]
, m̃ ∈

(
−n

2
,
n

2

]
. (25)

As the basis (8) satisfies
(
Cr

q

∣∣f )
FM

ω (ϕ, z) = e−i2π(Mr/q+ωf )FM
ω (ϕ, z) and CnF

M
ω (ϕ, z) =

e−i2πM/nFM
ω (ϕ, z), the representative functions �

(k̃m̃)
00 (ϕ, z) and SAB are

�
(k̃m̃)
00 (ϕ, z) = F−m̃

−k̃h/
√

4π2ρ2+h2
(ϕ̃, z̃), �

(k̃m̃)
KM (ϕ, z) = S−m̃+nM

−k̃f/2π+K
(ϕ, z). (26)

For the other line group families, parities do not commute with roto-helical symmetries,
which results two- or four-dimensional irreducible representations [7, 10]. One-dimensional
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ones appear for some particular values of helical and angular quasi-momenta, while pairs or
quadruples of the pairs (k̃, m̃) are combined in two- and four-dimensional representations. A
choice of a particular pair (k̃, m̃) determines both λ and l. For an additional generator g (like
U, σv and σv) we define g-parity g of a representation λ as g = 1 if D(λ)(g) = I (identity
matrix), g = −1 if D(λ)(g) = −I and g = 0 otherwise. This way, SAB is defined by the
quasi-momenta quantum numbers and parities. For the fifth family the only parity is U , and
for the 13th family parities are U , v and h (corresponding to the generators U, σv and
σv). Introducing notation ̃g being equal to −1 if g = −1 while ̃g = 1 otherwise, the
representative functions of the fifth and 13th family are respectively given by

�k̃m̃U

00 (ϕ, z) = exp

(
−ĩU

(
m̃ϕ +

(
k̃ − 2πm̃r

f

)
z

))
, (27)

�k̃m̃U hv

00 (ϕ, z) = exp

(
−ĩU

(
̃vm̃ϕ + ̃h

(
k̃ − 2πm̃r

f

)
z

))
. (28)

The identical representation of all the families is obtained for k̃ = m̃ = 0, and g = 1 for
all the involved parities. This gives a unit representative function for the invariants. Note that
when an invariant is a real function, the amplitudes satisfy αM

K (ρ) = α−M
−K (ρ). Consequently,

in this case for families 5 and 9–13 the amplitudes are real, while αM
K (ρ) = α−M

K (ρ) for
families 2–4, and αM

K (ρ) = αM
−K(ρ) for families 6–8.

5. Applications to carbon nanotubes

To illustrate possible applications of the developed concepts, we consider single-wall carbon
nanotubes (SWCNT) [1] which have huge symmetry, described by commensurate line groups
[11, 12] and which are the most studied and the most promising nano-systems. The symmetry
group L of SWCNT (n1, n2) is from the fifth family when n1 > n2 > 0 (chiral tubes) or
from 13th family when n1 > n2 = 0 (zig-zag) or n1 = n2 > 0 (armchair tubes), with the
parameters defined [11] in terms of n1 and n2:

n = GCD(n1, n2), q = 2
(
n2

1 + n1n2 + n2
2

)/
nR, a =

√
3
Dπ

nR
. (29)

Here a0 = 2.461 Å is a graphene lattice period, D = n
π

√
q̃R
2 a0 is the tube diameter,

R = GCD(2n1 + n2, n1 + 2n2)/n, while r is a more complicated number theoretical function
[11].

SWCNT is a single-orbit systems, i.e. taking an arbitrary atom (denoted as C000), each
other atom Ctsu is obtained by a symmetry transformation �tsu = (

Cr
q

∣∣a/
q̃
)t

Cs
nU

u (for
t = 0,±1, . . . , n = 0, . . . , n − 1, u = 0, 1). These transformations form the fifth family
subgroup L(5) of L, being the full symmetry group for the chiral tubes, and its halving
subgroup for achiral ones. In order to incorporate the convention that the x-axis coincides
with the U-axis of the symmetry group, the reference atom C000 is positioned as

ρ000 = D/2, ϕ000 = 2π
n1 + n2

nqR
, z000 = n1 − n2√

6nqR
a0. (30)

5.1. Potentials

The fields produced by nanotubes are necessarily invariant functions. Indeed, for any pairwise
interaction v(r, rtsu) of a probe particle (positioned at r) with the nanotube atom Ctsu

(positioned at rtsu), the total potential is V (r) = ∑
tsu v(r, rtsu). When the symmetry



11842 I Milošević et al

Figure 1. Potential of the carbon nanotube (13, 13) (L = T 1
26(1.23 Å)D13h, ρ0 = D/2 = 8.82 Å)

induced by the Coulomb atomic potential. Non-negligible expansion coefficients αM
K (ρ) plotted

in the significant range 0.75D/2 < ρ < 1.2D/2.

transformation � is applied, the potential �V (r) = ∑
i V (r, �−1rtsu) is invariant, as only

its terms are permuted. Therefore, its general form is given by (24). Further, the terms
with |K| = |M| = 1 cannot vanish, as in that case the system would have apparently larger
symmetry than L.

At first we analytically discuss the ionic Coulomb potential, yielding the potential
of the whole nanotube V (r) = ∑

tsu
1

|r−rtsu| . The Poisson equation becomes 	V (r) =
−4π

∑
tsu δ(r − rtsu), and straightforward calculation gives the expansion over basis (17):

V (r) =
∑
KM

∫ ∞

0
αMb

K UM
Kb(bρ, ϕ, z) db, αMb

K = 8π

D

UM∗
Kb

(
D
2 , ϕ000, z000

)
b2 +

(
2π 2K−M

a

)2 . (31)

The expansion amplitudes αM
K (ρ) over normalzed harmonics HM

K can easily be found in terms
of modified Bessel functions Km(x) and Im(x). For example, for the achiral tubes (13th line
group family, see figure 1), we get for K = M = 0,K = M/2 (M �= 0 even) and otherwise,
respectively

α0
0(ρ) = H 0∗

0 (ϕ000, z000)




0, ρ � D

2
;

−4π ln

(
ρ
D
2

)
, ρ >

D

2
,

αM

M

2

(ρ) = 2π

nM
HM∗

M

2

(ϕ000, z000)




(
ρ
D
2

)nM

, ρ � D

2
;

(
ρ
D
2

)−nM

, ρ >
D

2
,

αM
K (ρ) = 4πHM∗

K (ϕ000, z000)




KnM

(
2π

|2K − M|
a

D

2

)
InM

(
2π

|2K − M|
a

ρ

)
, ρ � D

2
;

InM

(
2π

|2K − M|
a

D

2

)
KnM

(
2π

|2K − M|
a

ρ

)
, ρ >

D

2
.
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(a)

(b) (c)

Figure 2. Bloch eigenstate of the carbon nanotube (4, 2) (with L = T 9
28(0.8 Å)D2 and radius

ρ0 = D/2 = 2.07 Å) corresponding to k̃ = π/10 f = 0.389 993 Å
−1

and m̃ = 1 (energy
E = −0.285 eV). (a) Non-negligible expansion coefficients αM

K (ρ) plotted in the significant range
0 < ρ < 1.5ρ0. ((b) and (c)) Harmonic expansion at particular radii ρ = 0.85ρ0 and ρ = 1.15ρ0.
The greed of 50 × 32 × 32 points over (ρ, ϕ, z) is used.

Another example has been discussed in the context of the layer–layer interaction of
double-wall tubes [13]. Using Van der Waals pairwise potential, the total potential of a single
wall tube has been numerically calculated and expanded over harmonics. The amplitudes
αM

K (ρ) rapidly decrease both with M and K, which has been used to show that the interaction
between layers is very weak, even vanishing in some cases, making the double-wall tubes
ideal component of nano-machines.

5.2. Bloch states and electronic density

For the chiral tubes (n1 > n2 > 0), the electronic bands for each k̃ ∈ (0, qπ/na) (interior of the
helical Brillouin zone) are double degenerate, and correspond to two-dimensional irreducible
representations Em̃

k̃
(m = −q/2 + 1, . . . , q/2). In fact, the generator U reverses z-components

of linear and angular momenta, making degenerate the Bloch states 
(k̃,m̃)1 = 
(k̃m̃)(r) and

(k̃,m̃)2 = 
(−k̃,−m̃)(r) (for both states U = 0 and ̃U = 1). According to (27), the SAB
(22) of the representation Em̃

k̃
is



(±k̃,±m̃)1
IKM (r) = exp

(
∓i

(
m̃ϕ +

(
k̃ − 2πm̃r

f

)
z

))
RIMK(ρ)HM

K (ϕ, z), (33)

where HM
K (ϕ, z) are the fifth family harmonics (table 1).
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(a)

(b) (c)

Figure 3. Electronic density of the carbon nanotube (4, 2). Panels (a)–(c) as in figure 2.

We are going to find the amplitudes αM
K (ρ) in expansion (24) of the Hamiltonian

eigenstates 
(k̃,m̃)l(r) over the found symmetry adapted basis. Within the tight-binding model,
Bloch eigenfunctions are linear combination of N atomic orbitals (per atom) χi (i = 1, . . . , N):


(k̃,m̃)l(r) = ∑
tsu,i c

(k̃,m̃)l
tsu,i χi

(
�−1

tsur
)
. Due to the symmetry the coefficients c

(k̃,m̃)l
tsu,i are not

independent; by abbreviating those associated with the reference atom, c
(k̃,m̃)l
i = c

(k̃,m̃)l
000,i , the

eigenfunctions get inductive form [11]


(k̃m̃)l(r) = 1√
|L(5)|

∑
tsu

∑
l′i

c
(k̃m̃)l′
i D

(k̃m̃)∗
ll′ (�tsu)�tsuχi(r). (34)

This simplifies calculation of the amplitudes: when (34) is substituted in the scalar product

αIMK = (



(k̃m̃)l
IKM (r),
(k̃m̃)l(r)

)
, instead of the action on the atomic orbitals by the unitary

operators �tsu, their inverses �
†
tsu = �−1

tsu may be applied on the SAB functions on the left,
giving by (19):

αIMK =
∑
l′l′′i


 1√

|L(5)|

∑
tsu

D
(k̃m̃)∗
ll′ (�tsu)D

(k̃m̃)
ll′′ (�tsu)


 c

(k̃m̃)l′
i

(



(k̃m̃)l′′
IKM (r), χi(r)

)
.
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After applying the orthogonality theorem [9] the braced factor reduces to δl′,l′′/|λ| (where |λ|
is the dimension of D(λ)), and Bloch eigenstates are expressed through the amplitudes of the
atomic orbitals:

αIMK = 1

2

∑
l′i

c
(k̃m̃)l′
i

(



(k̃m̃)l′
IKM (r), χi(r)

)
. (35)

To get deeper insight into the last expansion, we use the simplest tight-binding model
[14], with the single Slater-type orbital perpendicular to the nanotube cylinder:

�(r) =
√

2Z7
eff

15πa7
B

|r − r000|
(

ρ cos ϕ − D

2
cos ϕ0

)
e− Zeff

aB
|r−r000| (36)

(aB is the Bohr radius and Zeff ≈ 3.81).
For the tube (4, 2) we analyse the electronic state corresponding to the energy

E = −0.285 eV. Its quantum numbers are k̃ = π
10 , m̃ = 1, U = 0 (i.e. it transforms

according to the irreducible representation k̃= π
10

Em̃=1). Figure 2 shows the expansion of this
state, performed numerically.

Finally, we calculate electronic density, being the sum � = ∑ |
(k̃m̃)l(r)|2 of the densities
|
(k̃m̃)l(r)|2 of all the filled states, i.e. below the Fermi level. At zero temperature this is an
invariant function, and can be expanded over the harmonics HM

K . The results for the tube (4,
2) are presented in figure 3.

6. Conclusions

It has been shown that each covariant function (transforming according to an irreducible
representation) of a line group may be factorized as a product of a representative function with
the same transformation properties and an invariant function. The representative functions
are determined only by symmetry, and may be found a priori, independently of the particular
system (with given symmetry) or physical problem considered. This generalization of the
Bloch theorem to the full line group symmetry, may be easily extended to some other type
of systems, such as 3D crystals, for instance. Further, we found the bases of invariants, i.e.
harmonics, for all the line groups. This enables us to compose the total symmetry adapted
basis in the quantum-mechanical state space of any (commensurate or incommensurate) quasi-
1D crystal (e.g. stereoregular polymers or nanotubes) from the representative functions and
harmonics.

The results are used to expand the potentials and electronic density of carbon nanotubes
over the harmonics, and electronic Bloch eigenstates over SAB. Transparently enough,
significant amplitudes in these expansions correspond only to a few lowest harmonics
(K,M < 10). This result is intuitively sound, having in mind that higher harmonics (for
K,M > 1) have larger symmetry than the system itself.

This result can facilitate quantum-mechanical calculations of the properties of systems
with line group symmetry. In fact, even in the most accurate numerical procedures, like density
functional or Hartee–Fock codes, the choice of the basis functions in iterative procedures
makes a compromise between the memory and run-time on the one side and accuracy on the
other. Typically, a regular greed of hundreds of plane waves is used. However, the presented
result inspires a new, symmetry-based scheme. Only a dozen of harmonics corresponding
to the symmetry of a system are really significant. Even in the cases of the most complex
quasi-one-dimensional systems, the number of such harmonics is less than 100. Moreover,
the comparative accuracy is improved, as the contribution of the neglected part of the Hilbert
space is a priori known to be negligible.
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[10] Damnjanović M, Milošević I, Vuković T and Maultzsch J 2003 J. Phys. A: Math. Gen. 36 5707–17
Damnjanovic M, Vukovic T and Milosevic I 2000 J. Phys A: Math. Gen. 33 6561–72
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